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ABSTRACT

ﬁj The flexural fatigue behavior of five
constructicnal steels was investigated in air
and sélt water over a broad life spectrum
ranging frcam 1000 to 1CO million cycles. The
yield strengths of the steels ranged from
40 to 200 thousand pounds per square inch
(ksi). The effects of notches having theo-
retical stress concentrations ranging from
1.3 to 6 were included in this study. General
conclusions are : (1) both mechanical notches
and saltwater corrosion are more damaging in

high-cycle fatigue; (2) the combined effect

. of mechanical notches and salt water is

greater than either operating independently;
and (3) the high-cycle saltwater corrosion-
fatigue strengths of sharply notched low
and intermediate alloy steels are less than
10 ksi beyond 10-million cycles, regardless
of the tensile yield strength level. Addia
tional conclusions relative to notch root
radius, corrosion characteristics of the
steels, and fatigue design curves are

presented.




EFFECTS OF NOTCHES AND SALTWATER CCRROSICN ON THE FLEXURAL
FATIGUE PROPERTIES OF STEELS FOR HYDROSPACE VEHICLES

Introduction

The operational capabilities of advanced types of sea-
going vehicles, such as hydrofoils and deep submersibles,
are limited to a great extent by the ability of structural
materials to resist failure under severe onperating conditicns.
The conventional strength properties of structural materials are
continually being improved and the vehicle designer now has a
choice among a number of materials having high strength-to-
weight ratios, including steels, titanium alloys, aluminum
alloys, and reinforced plastics. Before being given serious
consideration, how2ver, each material must be investigated to
uncover susceptibilities to failure from extreme condit ions
imposed by higher operating speeds, greater operating depths,
and the aggressive action of the saltwater environment,

Frequently, the higher operating stresses required in
advanced applications, coupled with an increased sensitivity
of many materials to structural defects and corrosion, intro-
duce design considerations which heretofore were not particu.
larly critical. One such consideration is the resistance of
pressure-hull and underwater-foil materials to the simultaneous
action of cyclic loads (fatigue) and corrosion. Since the fab-

ricated structure will inevitably contain flaws, pores, or other
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stress raisers, and will be exposed to attack by highly corro-

sive salt water, an investigation of the influence of notches
and salt water on the fatigue properties of materials beccmes
important.

It is the purpose of this paper to present observations
made in an investigation of the effect of mechanical notches
and saltwater corrosion on the fatigue behavior of five struc-
tural steels over a broad life spectrum.of 1000 to 100 million
cycles. |

Materials Investigated

The steels investigated are listed in Table 1, together
with their chemical compositions and tensile propgrties. Brief
descriptions of these steels are as follows:

HT Steel - This steel is a high-strength, low-alloy con-
structional steel used by the U, S, Navy for the pressure hulls
of submarines constructed during Wnrld wWar II and early postwar
period.

HY-80 Steel - This steel is a high-strength, notchatough

steel used by the U, S. Navy for pressure hulls of submarines
constructed since about 1956.

HY-100 Steel - This steel is basically HY-80 steel upgraded

in strength by lowering the tempering temperature.
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HY-170/150 < This steel is currently under development as

a high-strength, notch-tough stecel for applications reguiring
higher strength-to-weight ratios than obtainable with HY-80
steezl. It is the material which will be used in the prezsure
capsule 65 the prototype Decp Sea Rescus Vessel.

Marage 180 - Maraging steels are high-strength steesle

which obtain their strength by the precipitation of intermetal-
lic compounds in a low~carbon, iron-nickel martensitic matrix.
At present, these steels have had no general applicaticn in
sea.water structures, but are potentially useful in this area.

Method of Test

Two general types of flexural fatigue specimens ware used
in this investigation. High.cycle fatigue tests were performed
with rotating =cantilever-beam specimens having the various
dimensions shown in Figure 1. These were constant-stress
(deadweight load) tests with a frequency of 1450 cpm. The
smooth specimens (Item a, Figure 1) were circumferentially and
longitudinally polished to a metallographic finish.

Low-cycle fatigue tests were performed with equipment
describéd previously.! Flat flexure.type specimens having the
dimensions shown in Figure 2 were uscd. The short end of the

specime.; was held stationary, while the long end was flexed

1Superscrints refer to similarly numbered entries in the
references at the end of the text.

4

—y . vy T 4 O I R W Wl . SV TP S —— —- p———-




between electrical or mechanical stops by é hydraulic pistén.
One or more strain gages (0.25-inch gage length) were attached
to the minimum test section to record the longitudinal.etrain.
It should be noted in Figure 2 that the placement of gages on
the notched specimens was such as to give a nominal strain,
irrespective of the notch.

All of the fatigue tests were of the completely reversed
type (fatigue ratio = -1). The low-cycle fatigue tests in air
were cycled at 1 cpm using electrical stops. This produced saw-
tooth strain-time pattern. In the low-cycle corrosion-fatigue
tests, the speqimens were cycled at various rates ranging from
0.02 to 0.2 cpm using mechanical stops and timers. This produceé
square-wave patterns having dwell times ranging from about 0.1
to 25 minutes. Subsequent analysis showed no significant effect
for cycling rates over the range of frequencies studied. Accord-
ingly, the corrosion-fatigue data in this paper have been ana-

lyzed independent of cycling rate.

In the corrosion-fatigue tests, Severn River water conw
tinuously wetted the test surface. Application was such that
the water applied was well aerated. Severn River water is a
brackish estuvary water containing 1/6 to 1/3 the salt content of
natural seawater depending on the season and the tide. Previous
fatigue tests in both Severn River water and natural seawater

have shown no significant differences in the effects of the two

5
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media. In the case of thie low-cycle corrosion-fatiguo tests, the
specimens wore first cycled in air until stress-strain conditione
stabilized (approxtimately 10 cycles). After recording the total
strain range, the strain gage was removed and the test was con-
tinued in the presence of salt water.

Pailure Criteria

Failure in the high.cycle, rotating cantilever-beam tests
coﬁaisted of complete fracture. Failure in the low-cycle smooth-
specimen tests was defincd as one or more surface cracks, 3/16 to
1/4 inch in length. In the notched specimens, failure was
defined as one or more surface cracks 1/8 to 3/16 inch in length,

extending from the ends of the notch.

Stress Concentration Factors

| The theoretical stress concentration factors for the notched
fatigue éﬁeéimens were determined from tables and graphs derived
by Neuber. The case of the centrally located surface notch in
the low-éycle fatigue specimens is not covered by Neuber. It was
assumed, however, that the results would be similar to the case
of the full-width surface notch.

Stress Calculations

There is general agreement that low- and intermediate-cycle
fatigue life is dependent on total strain range.l:3¢3 Accordingly,

the total strain range for each low cycle fatique specimen was
determined fram the strain gage attached to th: test section

after conditions became stabilized. The tectal strain range was




®
‘hen converted to a reversed pseudoelastic stress (a ficticious

tlastic stress) by the following relationship

spn”g‘(Aer) ceeee(l)

Spg = reversed pseudocelastic stress, psi
E = modulus of elasticity, psi

deq = total strain range, in/in.

In the case of the high.cycle fatigue tests, the maximum
ominal reversed stress was calculated from the applied dead-
eight load and the dimensions of the specimen, disregarding
otch effects. The nominal stress and pseudoelastic stress are
ssumed to be the same in the high.cycle tests siﬁce the behav.
or of the specimen is essentially elastic.

road Life Spectrum Fatigue Curves

The combined high- and low.cycle fatigue data for each
aterial and test condition were plotted on the basis of pseudc-
lastic stress, Spg, versus cycles fo failure, N. Curves or
ines of best fit were calculated for each set of data in either
f two forms, whichever gave the best correlation for the input
ata

S = cN-k ’ : 000000(2)

SPE=mN-n+SE 000000(3)




iy

7

-~

1 T

.
nw\,

-

—— & ——

iy T
+ .

whoero
N = cycles to failure
&g = fatigue limit, psi
N
“'e;k, ' m, n = regressicns ccnstants.

Equation (2) is a power function giving a linear relation
on a log-log plot. Equation (3) is taken from Langer?® and takes
into account this leveling-off of data in the high.cycle region
as occurs in the development of a fatigue limit.

Results of Tests

Figures 3 and 4 are the Spg versus N curves for the HY-100
steel in air and saltwater environments, respectively. These
curves are typical of the fatigue behavior observed for the
various steels. Since curvzes for the other four steels were
similar, they have not been included in the paper.

Included in Figures 3 and 4 is a low-cycle fatigue
"design.éurve" based on the best-fit, smooth-air curve and
having a reduction factor of either 2 on stress or 20 on life,
whichever is more conservative at each point. It is Langer's2
belief that these reduction factors are sufficient to cover the
effects of size, environment, surface finish, and scattervof
data. Stress concentrations are given separate ccnsideration.
With respect to environment, Section III of the ASME Boiler and
Pressure Vess2l Code regquires that separate consideration be

given to the effects of "unusually corrosive environments."

8



Table 2 is a summary of the fatigue properties for each
material and test condition where the fatigue strength reduction
factors, K¢, are based on smooth specimens run in air at the
indicated life. 1It is aprarent in Table 2 and Figure 3 that
the fatigue strength reduction factors in air for HY-100 steel
at Ky = 4.5 to 6, are less than for those at K, = 3. This is
also true for HT steel, and presumably would have been true
for HY-80 steel if the higher stress concentratio:s had been
run.

These results indicate that there is a critical notch
radiue, greater than zero, which gives ﬁaximum fatique strength
reduction factors. Such a conclusion has support both in theory
and experiment.4+*5 For a given type of notch, the critical radius
is dependent on strength and grein size. For the higher-stremgth
HY-130/150 and Marage 180 steels, it appears that ;helcritical
radius ié at or below 0.002 inch,

Figures 5, 6 and 7 summarize the individual and camb.ined
effects of notches and saltwater corrosion on the five steels.
Figure 5 compares the most damaging ‘fiotch with the smooth air-
test data. It is apparent that the damaging effects are larger
at the high-cycle end of the spectrum. Figure 6 compares the
effects of salt water on smooth specimens. .Once_égain, the

high.cycle effects are the largest. Figure 7 compares the
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Table 2 ~ Summary of Fatigue Properties

Fatigue Strengtn
pseudoelastic Stress,

Fatigue Strength
Reduction Factor

ksi Ke
Material | concition|Environment|Re1G° [n= 10" K~ 10 |Na 10 [B=10 [N=10 [N=10° [N=10" [N=1Q [N=10"
Smooth Air 226.00 96.0] &7.41 *7.,5{ 35.1] 1.00] 1.0C] 1.00] 1.C0[ 1.00 |
Notch Alr 230.0] 91.2| 82.2] 23.5] 25.5] 1.20f 1.05( 1.12] L.27| 1.3)
Keel, 3
Notch Alr 173.6] 63.81 32.87 21.17 16.1] 1.877 1.%¢T 1.601 1.78] 2.12
Kee3
HT Notch Alr 132.1[ 75.2] 4G.61 2B.61 23.21 1.751 1.26] T.171 1.31[ 1.51
Steel Keel, 5.6
Smooth Salt wWater No Data 4r.o] 272 6.2 - - 1.01] 1.37} 5.66
Available
Notch Salt water | 120. 63.5] 33.5] 22.01 7.5 2.73( 1.40] 1.20] 1.63] 4.62
Keml.3
Notch Salt water | /4.6 43.07 2C 1| 13.3| .7 B.%0] 2.on Y 8T 17941 15
)
Notch Salt water | 80.3| 50.0] 20.5| 13.3| ¢.1| 4.13] 1.32] 1.55] 2.00] 4.3%
tha.5-6
Smooth Air 231.5]112.6f 65.3] 50.9] 41.6] 1.cof 1.00! 1.00} 1.00! 1.00
Notch Alr 176. (0.5] 36.31 25.21 2¢.5] 1.21] 1.61[ 1.83] 2.02] 2.03
HY -80 Kem3
Smooth Salt water |2C7.C|1c0.C] 42.0] 26.2] 3.3[ 1.12] 1.17] 1.38] 2.02] &.74
Notch Salt water |151.4] 71.¢] 2231 16.¢] Z.6 155 1.50] 2.02] 3.19111.-5
Ke=3
Smooth Air 229.3[120.0( 32.3] r1.4] €5.7] 1.00| 1.00| 1.00{ 1.00] 1.00
Notch Alr 132.6117272) 66.4] €0.5[ Bo.1| L.26] 1.1/ 1.26] 1.52] 1.64
Ke=1.3
Notch Air 131.0] /3.3 233571 23.31 16.2 1.13[ 1.c¢] 2.16] =.c0| 4.CH
Ke=3 _ R 1
Notch Air 225.0) BL.0| B5.3] 4.3} 3C.4] 1.01] 1.9%| 1.35] 2.08] 2.16
HY-100 Keeh. 5.6
Smooth Salt water [130.3] 37.7] ©C.3] 23.1| 11.6{ 1.1/ 1.221 1.65{ 2.55] 5.6%
Notch salt water [162.31 33.C| «7.2] 2541 7.4 .23 1.2/ 1.781 2.81] 3.53
Fe=1.D
. Notch salt water [1673.71 31.6] 23.2] 18.3] 4.2y 1.32] 1,47 2,141 3.80]1%5.2)
Kc‘}
Notch Salt water [1LO.O] 7c.1] &C.2] 21.6 &.21 1.61[ 1.6C| 2.08] %.31[710.60
KL=“.5-6
Smooth Air 222.81132.3| 4.t rr.s) 67.2] 1.00] 1.cc| 1.00] 1.00) 1.00
Notch Air 2C7.2]1eC.2] 31.3] €4.C] 62.3 | 1.C3] 1.5C) 1. igT .21 1.27
Ke=1.3
Notch Air B3 BT 2 21 L Bl G50 Sa. 7| C.3y [ 1 34 i.75( 1.71{ 1.57
Ky=3
HY-130/15037 5t ch I3%3 EFC[BC.C| 5.0 Lok 00.C | C.L3[ 16T 2. I8 1.92] 1.6
Kt'—‘ﬁ
Smocth [Salt water [223.¢ [1pn.C| BU. 7| 38.1] 3.2 [ C3[ 1.7 T.65[ 2.7 7-22
Notch Salt Water [134.57IC1.Cy e 8 2 ([ 7.0 ] 114 1.2111.79|2.80f 3.10
Ky=1.3
Netch Salt water [201.4][ 33.C| 33.3] 17.8] 2.5 1. 111 3i.51] 2.36| 4.35(13.20
Ke=6 .
Smooth Air 243.3 1183, 7 {11s.24 33.1] 76.0) 1.col 1.oc| 1.00} 1.00]| 1.00
Notch Alr 225. B NES.C [ 37 BB AT O T OB T LTI 1.3
Ke=1.3
Notch Air 13041239 3 .3 f1.53( 56.C | 1. 28] 1T.27[ 1.28 1.301 1.36
KQ:;
Notch Air 253.C| 92.3| L7.B[ 35 31 .U ¢.35] 1.71[ 2.a4 | 2.68] 250
Marage Ky=6
180 Srooth Salt water [i52.5] 9:.%) 63.5] 27.LJ 17.2 1 1.5C{ 1.,¢| 1.97] 2.43] 0%
Notch Salt water [142.513).6f /.1 33.8[20.5 [ 1.71{ 1.7/ 1.39 2.46 3.(2
Kt=1.}
Yotch Salt water [112.5 2. 6.3 210 f.6]2.16] 2.45] 318 A BL|10.00
KL=6
10



combined effect of both notches and salt water. TwoO obsecrva-
tions appear to be significant. First, the difference in the
low-cycle fatigue results are greater than when the factors were
considered individually. Second, the fatigque strength range
between the five steels has been reduced to 4 ksi at 100-million
cycles. |

Figure 8 shows, in greater detail, the high-cycle effects
with respect to the theoretical stress concentration factor.

The minimum strengths at Ky = 3, mentioned previously for HT and
HY-100 steels tested in air, are readily apparent.

Figures 9 and.IO show the trend of the strength reduction
factors, K¢, in Table 2 for the lowest- and highest-strength
steels investigated. In Figure 9 the notch sensitivity of HT
steel in air is low over a broad range of life, the highest
strength reduction factor observed being approximately 2. 1In
the presénce of salt water, however, substantial ipcreases in
notched-strength reduction factors cccurred in HT steel at
both ends of the life spectrum. 1In the absence of a notch, only
~ne niun.cvcle strength reduction factors were affected. Com-
parison of notched and unnotched corrosion fatigue data indicates
that the notch intensifies the corrosion attack in the low-cycle

region, but the attack is more general and independent of . he

notch in the high.cycle region.

1]
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Figure 10 is typical of the response cpreoxvet tor the otiwe:
four steels. The ccabined ection of notches and salt water in
the low-cycle rogion was not as severe as for HT stcal., On the
othcr hand, sharp notchcs tended to intensify the corrosion
effcct in the high.cycle region. The magnitude of this effect
generally increased with increasing strength level of the steel.

The design curves described previously are included in
Figures 9 and 10. Noteworthy in Figure 9 is the fact that the
design curve is sufficiently conservative to includa the effects
of both notches and environment up to the lives of 1 million
cycles. In Figure 10, however, the design curve doces not include
eifher the effect the effect of sharp notches beyond about
10,000 cycles or the broad effects of environment. One would
conclude.-therefore, that noth notches and the saltwater environa
ment should be treated separately in high-strength steels, and
that salt water should be considered as an "unusually corrosive
environment" when such steels are being applied in accordance
with Section III .of the Boiler and Pressure Vessel Code. »

Figures 11 through 13 are enlargyed views of the test sec-
tions of corrosive-fatigue specimens. Item a, Figure 11 shows
the general corrosive attack of HT steel which has almost oblit-
erated the mild notch, K, = 1.3, after 10 days' exposure. This

same type of attack has blunted the sharp notch, K¢ = 6, of the

12




lower stressed spccimen. Item b, Figure 11; which was rﬁmoved
from test aftcr a l.year exposure.

Figure 12 shows the general corrosion of HY-120/150 steel
to be less severe than that of HT steel, and that fatigue crack
initiation in the low-cycle region is primarily dictated by the
notch,

The high propensity of 12-percent Ni maraging steels to
localized pitting, even with short exposure times, is evident in
Figure 13. Although mechanical notches are the determining fac-
tor in establishing the location of primary crack initiation in
the notched specimens, it is evident that the corrosion pits dic-
tate the course of crack propagation by acting as local crack-
ini£iation sites. These local cracks in turn tend to link
:ogetherhﬁo form major crack paths. The detrimental effect of
’>itting on the low-cycle corrosion-fatigue strength of the
naraging‘steel is evident in the high strength reduction factors

>bserved for the smocth specimens (see Table 2 and Figure 10).

‘onclusions

Broad life spectrum flexural fatigue tests on five steels
'HT, HY-80, HY-100, HY-130/150, and Marage 180} resulted in the

following conclusions:

e FPoth mechanical notches and saltwater corrosion are more

iamacging in high-cycle than in low-cycle fatigue.

13
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© The cambined effect of mechanical notches end salt water

Ls-greater than either operating independently.
'® The critical notch root radius in high-cycle fatigque for

HT, HY-100 and presumcbly HY-80, is approximately 0.010 inch.
The critical radius for HY-130/150 and Marage 180 ..s at or below
0.002 inch.

© The high-cycle, saltwater corrosion-fatigue strengths of
sharply notched low and intermediate alloy steels are less than
10 ksi beyond 10-million cycles, regardless of tensile yield
strength level.

® The corrosion characteristics of the steel have an effect
on fatigue behavior. For example, the general corrosion suscep-
tibility of HT steel diminishes the effect of sharp notches in
the high-cycle region. On the other hand, the propensity of
l2.percent Ni, Marage 180 for localized pitting, intensifies
notch effects and generates crack sites which affect crack ini-
tiation and propagation.

w A low-cycle faligue "design curve," based on reduction
factors of 20 on life, or 2 on strength, is conservative up to

~a1l1on cycles for HT and HY-80 steel in the presence cf

eirther sharp notches or saltwater environment. In the presence

of both, it is consesrvative only for HT steel. This leads to

14
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- the conclusion that both notches and saltwater environment should
be given consideration apart froh such a design curve in high-

strength steels.
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Item (2) - 0.2-Inch Rodius Noteh, Ky = 1.3

5 Spp = 59,400 pSI or 144 percent of Tensile Yield Strength
4 Cycles to Failure = 14,574 at 1 CPM

% Time in Salt wnter = 10 Days :

E BT T e e g

¢ |

;
5 LR,
|
t Ttem (b) - 0.002-Inch Radius Notch, K¢ = 1.3
i Spg = 33,000 PSI or 80 pPercent of Tensile Yield Strength
. Removed from Test After 11,250 Cycles at (.02 CPM
Time in Salt Water = 1 Year
Figure 11
Low-Cycle Corrosion-Fatigue Failures, HT Steel, 3X




Item (a)

Smooth (No Notch)

Spg = 120,000 PSi or
83 percent of Tensile
Yield Strecngth

Cycles to Failure = 6,926 at
0.3 cpM

Time in Salt Water = 16 Days

Item (b)
'e2~Inch Radius Notch,
Ke = 1.3
67 Percent of Tensile
Yield Strength
ycles to Failure = 12,417 at
0.3 CpPM
ime in Salt water = 29 Days

Item (c)
0.002-1nch Radius Notch,
Ke = 6
Spp = 138,000 PSI or
95 Percent of Tensgile
Yield Strength
Cycles to Failure = 3,1]) at
0.3 cpm
Time in Salt Water = 7 Days

Figure 12
Low-Cycle Corrosion-Fatigue Failures, HY-130/150, 3x
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s 1 ) J o Item (a)
~ Smooth (Ko Notch)
: 4 Spp = 159,600 PSI or
| 80 percent of Tensile
Yield Strength
S . Cycles to Failure = 875 at
; kf;f 4 0.25 CPM
S i 7Time in Salt Water = 2 1/2
i g .jg Days
! s
b
Item (b) o ‘
0.2-Inch Radius Notch, o,
' Ke = 1.3 - IR
Spg = 205,200 PSI or ot
104 pPercent of Tensile , TR L
Yield Strength o,
‘ Cycles to Failure = 621 at Lo
0.25 cpu e
Time in Salt Water = 2 Days KRR
ﬁ.‘
! o TN
] i
] Item (c)
. : 0.002-Inch Radius Notch,

Spg = 154,000 PSI or
78 Percent of Tensile
Yield Strength

Cycles to Failure = 759 at
0.25 CcpM

Time in Salt Water = 1 1/3
Days

e Figure 13
Low-Cycle Corrosion-Fatigue Failures, Marage 180, 3X
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